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AVERAGE RUN LENGTHS OF AN OPTIMAL METHOD
OF DETECTING A CHANGE IN DISTRIBUTION

by

Moshe Pollak
The Hebrew University of Jerusalem

ABSTRACT
Suppose one is able to observe sequentially a series of

independent observations xl,xz..... such that xl’xz""’xv-l are

i.1.d. with known density fo and xv,xv+1,..., are i.1.d. with den-

sity fe where v is unknown. Define

ey n n f5(X)
= L I Xy °

R )
k=l i=k "0 1

n

It is known that rules which call for stopping and raising an alarm
{e}

the first time n that Rn or a mixture thereof exceeds a prespeci-

e R A i, - <

fied level A are optimal methods of detecting that the density of the
observations is not fo any more,

Practical applications of such stopping rules require know-
ledge of their operating characteristics, whose exact evaluation is

difficult. Here are presented asymptotic (A + ®) expressions for the

expected stopping times of such stopping rules (a) when v = @ and (b)

vhen v = 1, We assume that the densities fe form an exponential

family and that the distribution of log(fe(xi)lfo(xi)) is (strongly)

non-lattice.
| 3; Monte Carlo studies indicate that the asymptotic expressions
Y are very good approximations even when the expected sample sizes are
| §§ small.
i
— J -




L I. INTRODUCTION

process. Initially, the process is at State #0. At some unknown point

Suppose one accumulates independent observations from a certain

in time something occurs (e.g., a "breakdown") which puts the process
in State #1, and consequently the stochastic behavior of the observa-
tions changes. It is of interest to declare that a change took place
(to "raise an alarm") as soon as possible after its occurrence, subject
to a restriction on the rate of false detections. It is assumed that
the aforementioned observations are the only information one has about
the process, and the problem is to construct a good detection scheme.

Practical examples of this problem arise in areas such as health,
quality control, ecological monitoring, etc. For instance, consider
surveillance for congenital malformations in newborn infants. Under
normal circumstances, the percentage of babies born with a certain type
of malformation has a known value,p99/ Should something occur (such as
an environmental change, the introduction of a new drug'to the market,
etc.) the percentage may increase, (e-g+; the-thalidomide episude*of'therg
L960Le$¥> One would want to raise an alarm as quickly as possible after
a change would have taken place, subject to an acceptable rate of false
alarms. Generally, the problem arises wherever surveillance is being
done. N

A solution to the problem depends on what is known in advance
about the distributions of the observations. Let fo denote the density
of observations with respect to a o-finite measure u when the process

is in State #0, let fe denote the density of observations with respect




to y when the process is in State #1, and let v denote the unknown

point in time when the first observation from State #1 is made. Thus

one has a sequence of independent observations xl,xz,..., such that
Xl,Xz,...,Xv_1 are 1.1i.d. with density fo and Xv,xv+1,..., are i.1i.d.
with density fs where 1 < v < ® is unknown. It will be assumed here
that fo,fe belong to an exponential family of distributions and that
f0 is known.

Solutions for the problem which are in current use are known
as CUSUM procedures. For a survey see, for instance, Johnson and Leone
(1962). (See also Weatherall and Haskey (1976).) Lorden (1971) proved
a first-order asymptotic optimality property of a certain class of pro-
cedures for reacting to a change in distribution. When fe is known,
this class includes most of the standard appropriate CUSUM techniques
as special cases. When fe is unknown, Lorden (1971) suggests a first-
order asymptotically optimal procedure. (Asymptotic operating charac-
teristics of this and related procedures are given in Pollak and Siegmund
(1975). Further refinements can be obtained using results of Lai and
Siegmund (1977).)

Shiryayev (1963, 1978) solved the problem in a Bayesian frame-
work in the case that fe is known.

An optimal solution in a classical framework is presented in
Pollak (1983). Asymptotic operating characteristics of this and related
procedures are the subject under study here.

Without loss of generality, let the assumed exponential family

be defined by .

f (X) - eyx‘ll’()')
y




apreae.

———————

vhere 2 is an interval on the real line, 0 = Y(0) = Y'(0). Let F be

a probability measure on Q with F({0}) = 0. Let 0 < A < =». Define

n n f (xi) n yZi:k Xi-(n-k+1)w(y)
Z 1 xSy - L e
k=1 i=k "0*"% k=1

R{y}
n

RF = Riy} dr(y)

min(n[kiy}

> A}

-1
[]

min{nlkz‘z A} .

{e}

Raising an alarm at time NA is an optimal procedure when the value
8 (of the parameter of the distribution after a change occurred) is
known and raising an alarm at time Ni has optimality properties when

6 1s unknown (Pollak (1983)).

In order to evaluate and compare between procedures one needs
to formalize a restriction on false detections as well as to formalize
an expression for the speed of detection of a change after its occur-
rence. The restriction on false detections is usually formalized as

a requirement that the expected number of observations until a false

alarm (assuming that v = ®) exceed a prespecified value B. This

{y}
A

of a procedure with regard to the speed of detection of a change after

suggests a need for evaluating E(N,Y [v = ®), E(N:|v = ®) ., The quality
its occurrence is often measured by the supremum (or essential supremum)
of the expected number of observations that it takes to detect a change

after its occurrence, given that no false alarms have previously been

raised (see Lorden (1971), Pollak and Siegmund (1975)). This suggests

a need for evaluating E(N{e}

L - vive1, 0, E(N, - v|v =1, 6). These
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operating characteristics are difficult to compute. For simulations

-
e et i e it s o bl

see Roberts (1966).

In this article, asymptotic expressions (A + ©) for these
operating characteristics are presented. Monte Carlo studies indi-
cate that these expressions are very good approximations even when

the expected samples sizes are small.
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II. THE AVERAGE RUN LENGTH WHEN v = @

(y)’ Esy) the probability, expectation respectively

Denote by Pv
when 1 < v < ™, xl,...,xv_l are i.i.d. with density fo and are independent

of X ,X
\Y

NVOETRER which are i1.i.d. with density fy. Let PO’EO denote

i probability, expectation respectively when v = ©, Let F be a prob-

ability measure on 9 with F({0}) = 0. Denote

£ (X)
log ?iTEIT = yX; = ¥(y)

ziy}

min{nIZ n Z{y}

=1 24 2 B}, M% = o if no such n exists

y
oy }
-z, B zY -8

Y = 1/11n E{y) e [ =1 4

B

% o
] ]

(2]
[]

1//Q1/c)) dar(y) .

The computations of Cg and Cg are applications of renewal theory and
{ have been calculated in other contexts. (See Siegmund (1975), Lai and

Siegmund (1977), Theorem 6.2 of Woodroofe (1982).)

THEOREM 1. (1) E N{y} > Afor ally e 2. If I(y) <, then for any

0 A (Ao) iy} (Ao)
AO > 0 there exists a constant 0 < Cy < ® guch that Eo NAy 5_cy A

whenever A> Ao.

(11) If y € R, I(y) < = and the Piy}-distribution of

log(fy(xl)/fo(xl)) is non-lattice, then




g N = ac a+o

where o(1) - 0 as A + o,

THEOREM 2. Suppose that the P{y)-distribution of X1 is strongly non-

lattice (see Stone (1965)) for all y € Q. Then

(1) Ey N; > A. 1f F({y|I(y) <=} = 1, then for any A, > O
A A
there exists a constant 0 < CFO < @ gych that Eo Ni < CFO whenever
A > Ao.

(11) 1f F({y|1(y) < =}) = 1, then

E. N =

o N Acg(1+o(1)) ,

where o(1) + 0 as A > =,




III. PROOFS

The proof of Theorems 1 and 2 is based on the observation that
(under Po) R: - n is a martingale with zero expectation with respect

to 3(x1,...,xn), so that for stopping times N which are well-behaved

EON = EOR:. The proof becomes an analysis of the asymptotic behavior
F i
of E.R _.
0 NF

AFor any m, r

o {y} m _{y}
z z m I, 2
) R:+r =fe i=m+l 1 T e i=k “i dF (y)
k=1
i

m+r ZT:: Ziy}

+f I e dF(y) .
k=mt+1

{y}
Ozi < 0,

the first expression on the right side of equation (1) becomes negli-

Make note of the following three observations: (I) Since E

gible as r becomes large. (1I) The second expression on the right
side of equation (1) when regarded as a process in r has the same
stochastic Po-behavior as the original process R:. (I1II) 1If the
value of R: is large, the process R: behaves approximately like the
first expression on the right side of (1) for n = mér closely follow-
ing m.

The idea of the proof can now be described as follows. Let c

be a large constant, and let A be much larger than c. Regard the

%
stopping time NA which at first tells one to continue sampling until

F " " F * - F
NA/c’ If "soon" thereafter Rh 2 A, let NA NA. If not, forget the
first N:/c obse vations and reapply N:/c to the sequence of observa-

tions .u’s ow..g N:/c. Repeat this until the first time that R: > A




*
"soon" after N:/c‘ This first time defines NA' By virtue of observa-~
tion (I) it will be shown that the asymptotics of EORFF are the same
N
as those of EORF*. A
NA
The repeated applications of Ni/c (conditional on their exis-

tence) will be shown to be approximately independent of each other. By

virtue of observations (I) and (II), it will be shown that EORF* is
N
approximately equal to A
F o F " " F
(2) E.(R ]R > A "soon" after the first application of N,, ) .
0 N* n — Alc
A
Letting m = Nzlc in equation(l), note that the first expression
on the right side of equation (1) is equal to RFF x W F where
N N +r
NF + Aflc Alc
r
g Ale Z{y}
F i
i=NA/c+1
W F =fe dFl(Y) ’
N +r
Alc
F
F N
“are 1 1A=/kc zgy} F
dF,(y) = I e dF(y)/R" o
k=1 N
Alc

By virtue of observation (III) it will be shown that {R: > A "soon"

after the first application of Ni/c} is approximately equal to
F

{rR W > A for some 1 < r < ®»}. Let H, = min{r|RF_ W > A},
NN 4T = 1 N° N 4T
Alc "Alc Alc TAlc
Hl = o {f no such r exists. It follows from (2) that
E RF approximately E (RF W H < )
0 y* 0" yF NF am !l
A Alc Alc 1
F
EO(RNF wNF s B <)
A/lc Alc 1
Po(l-l1 < )
8




R

A ————— s

Conditional on 3(X1,...,X ), W is a Po—martingale (with unit

F F
NA/C NA/c+r
expectation with respect to F(X F seeesX F ). Therefore the
NA/C+1 NA/C+r
numerator in (3) is equal to EORFF
N
Alc

Results of Lai and Siegmund (1977) yield that, with K(y) = 1/Cy,

F
p o)) =PV o > A/R L

PO(H1 < w]g(xl,...,x F o .
Alc Alc Alc

N

for some 1 < r < ®|F (X X )))

’oo
1 N

F
Alc

approximately / K(y) dFl(y)

A/RY
N
Alc
Therefore

approximately

ARG R R ()

4) PO(H1< o9 .
“Alc

E0
AT TR EG®T, aF ()
Alc

Al 1 R(y) EoNi/c dF (y)

F
EORNF
- ———3513 f K(y) dF(y)

where the equality (4) follows from the definition of dFl(y) and the

PR
2 e -n is a Po-martingale (with zero expectation)

Xn). It now follows from (3) that

fact that

with respect to J(Xl,...,

E NF - E RF approximately A/ K(y) dF(y)
0A 0 NF
A

which is the heart of the content of Theorem 2.




The turning of these heuristic arguments into a rigorous proof

requires the ten lemmas presented in the sequel. The method involved
s is linear and nonlinear renewal theory (cf, Feller (1971), Stone (1965),
Woodroofe (1976), Lai and Siegmund (1977)), For a survey see Woodroofe

(1982).

PROOF OF THEOREM 1(i), THEOREM 2(i). Note that under PO both Rr{ly} -

and R:- n are martingales with zero expectation with respect to

3()(1, ces ,Xn) . Denote

"l{\y} = min{nl max exp{ g Ziy}} > A}
k=1l,...,n =k

F s {y}
Ty =m1n{n| max fexp{Z zg }dF(y)iA} .
k=1,...,n 1=k
F

It is well known that E ."{Y} <o E. T, <o (¢f. Lorden (1971)).

0" » Eg Ta
Since Ni y} < n{y} and NF < 1r it follows that E, Niy}

NF < ©, Hence E (R{{}} - {y}) and E (R Ni) exist. Since

N.F
fy} {Y} 4

>nl}, {N§> n} respectively, it is easy to

< © and

IR |<A, l<Aon{N

see that

1im inf J IR -nIdP nIdP
e {N{y} >n}

Hence by the martingale optional stopping theorem (cf. Chow, Robbins,

Siegmund (1971), Theorem 2.3 (p. 23)) E (R{{}} - {y}) = 0 and




R ok et

CREEEY

F {y} - F
EO(RNP-NK) = 0. Therefore, Ey N Y} > A and Ey n{ E, RNF
A N A

This completes the proof of the first parts of Theorem 1(i) and

> A.

Theorem 2(1).

For the second part of Theorem 1(i), let S, = 0 and define

0

Si recursively for i > 1 by

n
5 2 (0, log A)} .

h|
jssi_l+1

S, = min{n|n > S

i i-1°

S
{y} c _ i {y}
A S I;. S where C = minfi|2j=si_l+l Zj

By Wald's lemma,

Then T € [log A, log(2A)1}.

S

1
£ nlY) < E,S,/P, (L ty}

. e [log A, log (24)1) .
0o "a 0"1%0 .7 %

Now

S

L ip -
P(zr z.9 ¢ log A, log (2A)]) = ¢

04ep 4 n=1 j{sl=n,c=1}

(1/(24)) I j
n=1 {Sl-n.C=l}

S

| v

fy(xl,...,xn)dxl---dxn

1
= ar@mr (r 2 ¢ (108 4, 108 20D
3=1

As A+ o, 1im sup EOS1 < ©, and, by the renewal theorem
sl

lim inf P;y) (Z Zgy} € [log A, log (2A)]) > 0 ,
i=1

from which Theorem 1(i) now follows.

11

fo(xl,....xn)dxl--

-dx




kT s

in the

To prove the second part of Theorem 2(i), choose W)W,

interior of Q such that F([wl,mzl) > 0. Without loss of generality

n {wl}
assume that w, > 0. Denote: PO = 0, Fi = min{nIstri_1+l Zj <0
) w
or J : exp{z” Z{y}}dF(y) > Al , Y= min{ilj exp{Z" Z{y}
® =Ty %3 - W 3Ty ¥ 3

dF(y) > A}. Clearly Ni 5,213 I',. Hence

174
F F
(5) E, RNF = EgN, < ET1EoY -
A
Now
. n {wl}
(6) E,T; < Eg mintnljil S 0} < » ,

In a manner similar to Theorem 1 of Pollak (1983) one can show that

@2 &) | ° fwl}
(7) APO(YSI) —_> J (llcg)l’ly (z 2z > 0, n=1,2,...)dF(y) .
A—N’D [A) =
1

g=1 1

Therefore for given A, there exists a constant CFO such that if A > A

0 0
then
A
(8) PO(Y-l) Z_EOFII(ACF ) .
Note that
9 EOY = 1/P°(Y=1) .

Now (5), (6), (8), and (9) complete the proof of Theorem 2(1i).

PROOF OF THEOREM 1(ii), THEOREM 2(ii). Let A > CA > 0 be fixed.

Def ine: Lo = 0, For j=1,2,..., define:




n r? Z{y}
L.‘I = ain{n|n > Lj-l’ ] pX e Ik 1 dr(y) ZCA
t=L, , 4+ A
N= 1L, - Ly,
[ n {y} L
zi-!.j-l»l 2 L zd, ziy}
Ie > dF(y) 1f n> LJ
k=L, ;41
vj’“ = 1 L
1.J 3 z{y}
] L L ) 1
y f na=L
k-Lj_1+1 i
uj = min{n|n>_ Lj, "j,nl“}

= o {f no such n exists

M, = H AL

h h | +1

J = mm{jlvj -, > A}

N: - M,
n {y}
" 2 Liek 24
0" e dF(y) for n > l‘j-l
’ k=L, .41
-1
L L
L 5y} L 4 {8}
1 £l 2 ) I 4
drj(y) - I e 7k 1 dl"(y)/] L e 7k 1 4e(e)
LR k-l.j .

L) {y} " probsbility measure with unit mass at {y}




e S AT

1(@) = indicator function of the set ©
F R €%
T, = min{n|/ exp{ I z, }dF(y) > A, n > 1}
i=1 - -
= oo if no such n exists
F F
IA - APO(TA < »)
K(y) = 1/}
Gp = J K(y)dF(y) .

By Theorem 3 of Pollak (1983), I, + G, as A + .
Until further notice, we will assume that the support of F is

contained in a compact interval [a,b], 0 < a < b < ®, I(b) < =,

LEMMA 1. For arbitrary 0 < n < 1, and arbitrary probability measure
¢ whose support is contained in [a,b], 0 < a < b < =, there exists

B. > 0 independent of ¢ such that if B > B_ then

0 0
I¢

(10) 1-n < E;l < 1+ .
¢

PROOF. This is the content of Theorem 1 of Pollak (1983).

LEMMA 2. For arbitrary 0 < n <1, 0 < € < 1 there exists
A, = A;(n,c) and C = C(n,c) such that if A > A) and one chooses

CA = C, then
Po(ﬂj<~|al‘ )

J -
7A <l4+nj>1-¢ .

P,ll-n <

0 G, R
Fy el

14




PROOF .
1 1f Rj’Lj >A
Q1) po(ajaolaLj) -4 . .
1 R, . /A 1f R
A/Rj'l‘j j,Lj j,Lj < A

In a manner analogous to Theorem 1 of Pollak (1983b), replacing
W, 50, by a,b respectively in (7), one gets the confergence in (7)

to be uniform in measures F whose support is contained in [a,b].
A

Therefore, the constant CF in Theorem 2(i) can be replaced by a
J

constant C(Ao) which is independent of F, (it is only dependent on

3

a,b). Hence for A > 0

E. R
073 ’Lj C(Ao)

< .
sa/c, — A

P (R
0" 3,1y

> 8A/C,) <

Choosing A to be large enough, Lemma 1 in conjunction with (11)

complete the proof of Lemma 2.

LEMMA 3. For any €* > 0 there exists § > 0 such that if ome chooses

c

A-Cand:lfA?_C, then

*

A
E IR, . 3 R >$ <e€
0| §,L j,I.j C,

A
3 Ca

PROOF. Let X be distributed as X1 under Po.

15




A S
3 Lymx 24
<E, [e[1+ T e dF(y);

b bk Lj-l zLj-lz{y}
e 1e T e 1K1 gpyys5 A
k=L, 41 - A

-
< Eo[ebx 1+€—]; ebx[1+ci] >34 -él]
A A A

L

)

A bX bX 8

= {1+——|E.je ;3 e  >+——] .
[ CA) o[ —1+CA/A]

(2]

This can be made to be less than E"A/CA by choosing § to be large

enough.

LEMMA 4. Let U ~ U(0,1) be independent of xl,xz,... . Fore > 0 let

- (1) (1) (2) 1) 2
Qe,A (Rj,L > Yt»:,A) v (Rj,L = Ye,A’ u> Ye,A) where Ye,A’ Yé,,)x are

defined by PO(QE: A) = €., Then for A > 0 there exists an € > 0 such
L]

that EO(Rj,L ; Qe,A)/EORj,L < A uniformly for all A,CA such that

h| ]
A>c,.

PROOF. Choose €* < A. Let § be as in Lemma 3. Let € > 0 satisfy

€S + €® < A. Then

A A
ey (g 8 b)) o
foytyt %0 EO[“:.Lj’ [[RJ.LJ ) CA] | cy < Fan)) " %
ces At banBang v .
16
] _ ' '




LEMMA 5. For arbitrary 0 < n < 1 there exist A, = Az(n) and C = C(n)

2
such that if A > A, and one chooses C, = C, then

[ )
(1-n) v——zoklj < Po(llj< ) < (14+n) V—Eok!j .
i "3

! PROOF. Choose 0< o < n By Lemma 4, one can choose € > 0 such that

whenever A > CA

EO(Rj,Lj; QE.A)

Ceo Rj,LJ

(12) < n-a ,

where QE,A is as defined in Lemma 4. By Lemma 2, there exist A1 and C

such that if A > nax(Al,C) and one chooses C, = Co then

Po(uj < wlsLj)
K, =\1° <5 —7x <MW

¢
has a Po-probability PO(KE) > l-¢. Note that since PO(Qe,A) > PO((KE) ),

c c *
for any set S ¢ (l(e) n (Qe,A) there exists a set S < Qe.A n K such

i that Po(s) < Po(s*). Obviously Rj.Lj on S“r is larger than Rj.Lj on S,
and therefore
(13) zo(nj.Lj- k)°) < E o(Ry, Lj. QA -

Also note that because of the martingale property of

n {y}
Temt, 41 SP(Ticy 2y 1= (n-

41 ) under P,(given 31. .’ for n> l‘j-l)'

jl

it follows that




(14) Eo Rj,la G, = Eo R}.Lj S K(y)drj(y)
L L
3 3

-, SRG) I expli zi’} dF(y)
L +1 i=k
j-1

- Eo“‘j' 5 1) J KR(y)dF(y)

- Eo Rj,Lj GF

Therefore, by (12), (13), and (14),
-] . c
Po(ﬂj<°°) - Eo[’o‘“;‘ lq‘j), K. Y (K) )

< (L4@EGR, | Gp /A +E [j LA <‘<e)°]
'y

I

< (1+a)E R 4,1 GF/A +E (Rj JA; Q A)
j ]

< (1+ct)l!0 4L GF/A + (n-0a)EyR 5L GF/A
h | '

G
(L+n) -ﬂg—%——

0 4,1,
Likewise,

Po(Hy < =) 2 Eq(Po(Hy< wlsLj); R,)

v

(1-a)E,(R G, /A; K)
3oLy Fy €

Iv

(1-Ey(R, 1, Grj"‘) -t [j 1, IA; (%) ]

> (1-0)E,R, . Go/A - Eg(R, | /A: Q. ,)
0°4,L, F 0™3,L, €A

3

18




o — - e——

> (1-a)E.R G /A - (n- - 0)E R 4L GF/A

OijF 3

G
F
"O-VwE R L
™3

LEMMA 6. For arbitrary n > O there exist A3 - AS(") and C = C(n)

such that if A > Ay and one chooses C, = C, then

Vy n luj<°°)
1-n« A/G <l+n .

PROOF. Note that E (v:l j, Hj< ©) = EgR s, Lj and so
E (Vj Hj 0 j Lj/PO(uj<°°)‘ An application of Lemma 5
completes the proof of Lemma 6.

ln <®) = E

LEMMA 7. For arbitrary 0 < n < 1 there exist A, = A,(n) and C = c(n)

such that if A > A, and one chooses C, = C, then

(julj,,:A)
<1+n

PROOF. Let A be large enough.

\} >A)
I.M L J.H

P(V >A) *
j!j

Eo(

as  Eyv, ., Ivj -, >A) =

Clearly, l!o(vJ ’Hj; vJ ’szA) < zo(vj ’"j; “3“”)’ I’Q(V.1 ,HJZA)

‘Po(“j‘ ®), andr(vj.nj>A) =P (uj< ©) - P(j+1<nj<¢). Denote

19




() = 2 2 (rde(y). For x> 0

ro(x+1.j<nj<oo) = EP, (x+L <H <°°|3L)

F

= o(1) E, Rj,Lj/A = o(1) Po(Hj<°°) ,
where o(1) + 0 as x * ® uniformly in sLj, A for fixed CA = C,
Aso, Bo(L, i <L, +3) = Po(Ly<x) = Ep L Po(R > A/C) < x° C,/A.
for x > 0

0( j+1<Hj< ®) <P (x<1.j 1<}1j< ®) 4+ P ( j+1<x<llj<°°)
+ Po(Lj+1< Hj<x)
< ZPO(x_<_Hj<w) + PO(Lj+1 < x)
< o) By, <=) + x? /A

Since (by Lemma 5 and Theorem 2(1i)) PO(H <o) is of the order of

b
magnitude of 1/CA, choosing A, CA large enough will cause

PO(LJ+1< nj < ®) /Po(ll‘1 <») to be arbitrarily small, i.e.,
Po(vj M > A)/P (HJ <®) to be arbitrarily close to 1. Similarly,
14
k)

F
E(V, w3 V. o <A, H,<®) =E. Q. |1, >N]R
03.m Yy, g o Pj[A/Rj’L 1| *y,1

5 3

= o(1) PO(HJ<°°) *A,

20




vhere o(1) + 0 as A + ®, Therefore, choosing large (:A and very large

g uj <) to be arbitrarily

A one can get Eo(vj M3 Vj M ZA)/EO(V
] 9 ] j

h) h)

close to 1. Hence, one can make

Eo(vj,u ; vj,M >A) Eo(vj,ﬂ 3 llj<°°)
(16 P (vj > i) P (11'1 < @)
0 jo j - 0 j

be arbitrarily close to 1. Lemma 7 now follows from (15), (16), and

Lemma 6.

LEMMA 8. For arbitrary 0 < n < 1 there exist A_ = As(n) and C = C(n)

5

such that if A > AS and one chooses CA = C, then

Eo"J,nJ
L-n<gpe—<i+n .
F

PROOF. Denote vO,Mo =V

aa17) EV = 1 }:, v dp

’M1<A, 120, ..,3-15 Vy > A}

3

v <A’1--1’0....’j-2; vj.HjZA}

21




dp

4o2 1.4 0 :
vi,Mi<A' 1=0,...,3-2; Vj_l,uj_IZA'Vj,Mj?-A}

Note that

®
a® ] Ve %o

v:l.,Mi(A’ i=0,...,3-2; vj_]_,nj_le’vj ,Mj —>-A}
w

Now,

(19)

{Vi,M <A,1i=-1,0,...,§-2; Vj,u > A}
i b
= I E.(V |v > A)P (V <A,i=-1,0,...,5-2; V > A)
j'l 0 jinj jvnj" 0 i’“i J:Mj"

[- -

k| i=2 i

A, V., >A
3.M; ]]

v >
j-l,Hj _1_

22
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(20) z PO(V 1M

<A,1’-1,0,-..,j-2; vj > >A)
3 j=2 ™1

LM, = ij

-]
<1z p(V <A, 1=-1,0,...,3-3)| Po(V; \, >4, V > A)
L_z 0 4,M, ] 071,M, = 2,M,~

= [1+E0J]P0(V >4A) .

Ly 2% Y2,

Denote: J .. = min{n|n odd, vn,anlA}’ Jeven ™ min{n|n even, Vo.M

n
Since J = min{J

> A},

Y3 0 +3

odd’Jeven odd even’

4
@1 Eod < Bglogg * Epleven <P 0V, o 5B |

1,“1_ j
Therefore, because of (17)-(21), it only remains to show that

2,4, =

>A, V >A)-PO(V >A, R, u <2 v, >a)

l,Hl— ! Z,Ml CA’ 2,M2—

> A,V > A) can be made to be sufficiently small.

PV 1,M,

(22) P,

o1, >

+ PO(V > >A) .

A
2,20, Y2
Suppose that A/CA.Z A where A, is a constant, as in Theorem

0 0
{Rz’ul

2(1). Note that on < AICA}
Ty L

EO(R2

I My z"z L L, z"z L0}
- Eo

5 {=k 1 + T {wk :[
k"L1+1 k-H1+l
) . dr(y)lnz’nl, vl'“1‘z A
23




<
R * Bot2,1, |

< 1+ C(Ao)) ,

>

where C(Ao) is a constant as in the proof of Lemma 2. Therefore,

(23) >A, Ry y <G vZ,M > A)

1“1‘ A

Py (v

A
2,M, 2Alvy M T P01, 28

R2L

2 A
< E,|——=|v >A, R, ., <2|p > A)
o~ a |"im 2 2,,°¢C,|"0 1M1

1+ C(Ao)

St W, o

Now for any x > 0

PP .

(24) pP.(V >A, R

( ,
07'1L,M, =" T2,M, =T, 0 T2,M,

w

+ P (V

R 0 1,u13A’ Rz,ul N

A
5P0(R2,M130A’“1i1‘1+") + Py(Vy M1>A M>L +x) ,

x 2
A F_A x
(25) P, (R > M <L +x) < I P (R >) < .
o2, 2 v "<ty oy T0%a2c) 237C,

24
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and as in the proof of Lemma 7,

(26) Po(vl’“1 > A, Ml > L1+x) §_P0(L1+x < H, < ©) = o0(1) PO(H

3 3

where o(1) + 0 as x + © uniformly in &

L large A, for fixed CA = C,

Now (17)-(26) in conjunction with Lemma 5 and Lemma 7 and its proof
complete the proof of Lemma 8.

LEMMA 9. Let A > 0. There exist C = C()\) and A, = A6(A) such that

6
if A z-A6 and one chooses CA = C then
MJ MJ (v}
27) E,/ I expl: 2.7 }dF(y) < 2A .
k=L +1 i=k

The sum in (27) is understood to be zero if MJ = LJ.

PROOF. It is enough to prove that under the conditions described

(28) Ey(Ry |v1’M >A) <A,
1 1
for then
M M,
J I ()
E, ;S I explc: Z 1dF(y)
k=L +1 i=k
J
M
Todd Joda iy}
< Ey J ) exp{ I Z1 }dF(y)
k=LJ +1 i=k
odd
MJ MJ
even even {y}
+ Eo z exp{ I Zi }dF(y)
k=L +1 i=k
even
< A

25
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. v

where J and J are as in the proof of Lemma 8,
odd even
on {a/C, < Rl’Ll < a}

(29) EO(RZ,MI; vl,Ml > A) = EO(RZ,Ml; Hl f.Lz) .

Let x > 1. Note that {H, < L,} = {H <1,

< LZ] U &1+x <H = LZ}' We will analyze the expectation

+x < L2} u {HliL iLl'Px}

U {L1+x < Hy

in (29) on each of these four events separately. Note that R < A/CA

2,H,

<R on {Hl < L2}.

2,L1

(30) EO(R H. < L. +x < L2) ﬁ_EO(R )y =x.

2,31; 151 s Hp< L

. 1 +x) i.EO(R

2,H 1 2,L,+x

1

Hl; H1 <L ) = x

< L s H. < L

(31) Eo(RZ, ;M

+x) ﬁ.Eo(R §.L1+x) f.Eo(R

2 1 2,L 2 2,L +x

1

(32) EO(R L.+x < H, < Lz).i (A/CA) PO(L1+x < H, < ®) ,

2,H1 1 1 1

(Later we will let x be large and will evaluate (32) as in the proof

. = = [ - - i
of Lemma 7.) Denote: S, x .(Ll+x) v (k-1) < Hl Lz}. Given

Ll,Xl,...,Xth

[ 3 Hl

{y}i, =
E.(R i L+4x < H, =L)=E_[ T exp{ T 2.7 }1(5, _)dF(y) .
0772,H," 11 12 07 =1 +1 i=k * k,x

1

(33)

H
5

(34) Eq I exp{
i=k

{y}y, =
g }l(_k,x)dF(Y)

H
k1 iy L
= ff exp{- T Ziy } exp{ I Ziy 1E )dP0 dF(y)

- = “kyx
i—L1+1 i—L1+1

k-1
éyll exp{- £ Z{y}

=fE i
1 1=L1+1

}1(5k x)dF(y)
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k-1

- (y) g _ {y}y, =
d BL1 1 L + (expl 1-é:+1 2y }1(~g,x)IXL1+1....xk_1)dF(y)
1
k-1
-t M - 27
f E1.1+1 exp{ 1-é:+1 1 }PL1+1 S Y [Hoee oK, )F(y)
1

) (=
=/ g PL1+1(‘k, |xL1+1""'xk-1)dF(y) .

14+¢

Let ¥(a) > h> 0. Let ey >0, i, = (log A) O, For large enough A
L,+j-1
there exists €y > 0 ;u:? ;hat for all j > jo P0(211L1+1 xi > (j=1)n/db)
< exp{—elj}. On {zilL a %5 (3-1)h/b}: for n > j~1 + Ly»
1
Via s exp{j(h-y(a)} [ exp{yzi_L # (n-j—L1+1)w(y)}dFl(y)Rl’Ll. Let
k = L1+j. Let H = min{nfn >k, V > A}. (y) (H - k)

1,k l,n — L +1'1,k

1
> (3-1)(@(a) - h)/Y(y)b). So, for large enough A, for a < y < b, there
exists €, > 0 such that for all j > j, Péill(nl - k< E3-D () -

h)/ (' (b)b) f_exp{-ezj} for all a < y < b (see Pollak and Siegmund (1975)
for an example of the considerstions involved). Since

L, < min{nlf exply Z X, = (n-k _1)¥(y)}dF(y) > A/C }, there exists
i=k
€, > 0 such that for all j > j, P{yil(L -k > %(3-1)@W(a)-h)/(@W"'(b)b)

f_exp{-e3j} for all a<y <b if A 1s large enough. Therefore, for

32 35 k= L+j, 1f A is large enough,

(
Ey P y+1 Cexl% M oo Xpp)

) -
< E, pL 4 (1) v ) < L, nl'kle1+1....,xk_1)

f.exp{—elj} + exp{-ezj} + exp{-e3j}

and so
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[ -]
(36) Bo(nz,nl‘ Ly+x < Hi=L) < 35 + j-zj (exp{-e 3} + expl-€,3 + exp{~€,3}).
0
1+eo
By letting x be large enough - such as (log A) ~ one gets by virtue

;s V > A)/A is arbitrarily small for
1 M-

large enough A, from which (28) follows.

of (30) - (36) that EO(RZ,H

LEMMA 10. Let A > 0. There exists C = C(A) and A7 = A7(A) such that

if A> A7 and one chooses CA = C, then
0 < ERF - EV < AA
=Ty 0LM - .

A

PROOF. Clearly,
M {y}

Mool k J-1

37) =V + T e daF(y) + T V .
T T k=L +1 ju1 oMy

Therefore, by Lemma 9, it suffices to show that E gi-ly <AA
0 “i=1 j,HJ

for appropriately chosen C. Let Jodd and Jeven be as in the proof of

Lemma 8.
(39 J-1 o
33 E. Z V = % E.(V 33 <J-1)
°j-1 My yap O 3Y

= I BV, y3323-1D)

=1 4
J=1
= E I v
0 4m1 oM
J=1 J=-1
= E I v + E I \'4
| 04u1 My 0 4o 1My
' jodd jeven
28
}

.’ - . \J
——. T >




(39)

EO(V

1,u1‘

Jodd'l
< B z v + E z v

S0 g M0 g, 0
jodd jeven
Jodd 2 Jeven~2
=E. I V.. +E. I V
0 g1 My 0 4o 1M
jodd Jeven
(vl’nllvl’n1 <NENI -2+ -2)
< EO(vl,Mllvl,Ml <A (Ep Jgq * Ey Jeven)
4
<E(V1M1|1M1 Po(v1M>A) .
v1:"1 <A = Eo vl,nl"E (vl H 3 H1<°°)

+E°(1H.H<) E(V

1 L} Ty 20

- 1"01‘1,1.1' Bo“1,1.1+E o1, S A =)

(v > A)
L} Y28
Eo“’1.al' Hy <*) J

(EOIL)o(l) ’
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where o(1) + 0 as A + © as in the proof of Lemma 7. Since (as in the
proof of Lemma 7) PO(VI,HI?—A)/PO(HI< w) + 1 as A +», (38) and (39)

with Theorem 2(i) and Lemma 5 complete the proof of Lemma 10.

PROOF OF THEOREM 2(ii). Since (see (37)) ISI:* Vi 2A 1t follows
A g
that N: > NK and so

(40) EONF<E N*-EORN* .

Denote J* = mx{lej-NF and Vi Lj<A, or L, ;< N‘Z}.

“11: le‘:‘ 21y} J*-1
F tuk 24 y
R_ =V + T dF(y) + T V .
JbLJ*+1 =1 3,N;

Since V < Afor j< J*-1 and since
j’Mj -

] R S AR et ; N> N, 1t follows (st
031 jNF’A A’ T Pothym1 Vg NAP Bp7 Tp)» 1T TOLTows {since

N, A
M, = x) that
J*1 J-1
ojilvjNF<E°jflva ’

which in turn is bounded as in Lemma 10 (see (38), (39) above) by

A o(l).
N z“i L7} N A {y}
1=k 24 A Ly
E, I dF(y) = E, z e dr(y);
k-LJ*+1 ksL a4l
J
F
NA < NA
30




g 21:k ziy}
+ Eo T e dr(y);
k=L 4+l
J
g
N S ()
A z Z
Eo z eil i dF(y);N§<N: <-CA—-% *
k-LJ*+1 A
for large enough A, by virtue of Lemma 9,
N N iy}
A z z
Eo z ekl 1 dr(y); Ni-N:
k=L _a+1
J
SR T s
=E| I e =k "1 gp(y); N, = Ny
jk=L +1
J |
4 , M
5o ziy}
< Eg T e dF(y) ‘
Jk-LJ+1 |
: |
<d© , |

Hence, for large enough A, E (RF -V ) < 2A/C. ,
0 NF * F' — :

A TN
Let € > 0, A = 2/(CE). Since R, -V . >0, it follovs
AR

that PO(R:P -V “I" > M) € 2/(XC) = €. Hence, given € > 0, by

L ]
A TN
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T —.

choosing C to be large enough A would be arbitrarily small, and

P (RF -V > AA) < € for all large enough A. I.e., for large

0 *
SRR
enough A,

e>P(V - M) > P (V < (1-24a) .

F
o S LY

*
Let N denote N(I-X)A when one chooses C(l-A)A = (l—A)CA.

(1 A)A
It follows that for large enough A, with CA = C as above,

P(N <NF)>1-€.

(1 A)A —

Therefore, if C was chosen to be large enough,

F _ F. **
1) ENE = E (N Mp> NG )+ Eg(N Np < Nepaya)
*k F
> EO(N(I-A)A’ N > N(1 A)A) + E (N H NF< N(l A)A)
L1, F F
= EgN(y_aya ~ E (“(1 oA~ N4 Ny< N -aya)
Rk **k
2 EgNai-na ~ SlEofy,1, +EgNeiayal

|v

Q- Ze)E (1 VA ?

for all large enough A. Since € and A can be arbitrarily small, the

fact that E N = E R coupled with (40), (41), Lemma 10,
(1 MDA 0N (1 DA

and Lemma 8 complete the proof of Theorem 2(ii) for the case where

the support of F is contained in [a,b], 0 < a < b < =,

If (0,°) CQ, a = O,*and/or b= w; 1f one replaces dF by

F F

* 1 F n n
an l(g,n)dF, then NA-i NA (letting N

A have the obvious meaning,




— - ﬁm———ﬂ

despite F not being a probability distribution) and so
E NF <A C0(1+o(1)) where o(1) + 0 as A > %, and C is the constant
in Theorem 2(ii) (as described after the statement of the theorem).

For arbitrary a > 0 define Pn,a = (1+a)Fn.

vn " sz‘ 27} " Zui v
E g e 7K “1 dr(y) +f T et ar(y)
0 k-l k-l
1/n
- E.N J dr(y) + [ dv(y)} .
o,
Therefore, ;
F F '
1/n A zN" 21y} N pA ¥ - |
’oJ I e 7k idF(y)+fZ e 17K idF(y)?_M
0 k-l n k=l

Il/n
dr(y) + r dr(y) F
0 b O EgNy

.S A A ’

which, for any A > 0, can be made arbitrarily small by taking n to be

large enough, Now for A sufficiently small

& N 5 (v}
F F 1/n “A z y
PN <N, = B [Ny < N, ™ “,J 7 otk s dr(y)
0 el
e N 2 (v}
A Lg%
+ L e dF(y) > AA
n k=l
N
1m Lo iy}
SPOJ I e dF(y)
0 kel
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F

N
® “i Zifk ziy}
+J I e dF(y) > Al .
n k=1
*
NF' n,o
In other words, for arbitrary € > 0, Po( A-Z NA *™ > 1 - € for large
n,n F F o F

enough n and A, It is easy to see that EO(NA - NAINAn’ z_NA)

F F
n,a F n,a
< » ’ -
EON . Hence EONA > EONA (1-¢).

Letting € = 0, o > 0 completes the proof of Theorem 2(ii) for
(a,b) € (0,%).

1f w = sup{y|y € Q} < @ and I(y) + ©» as y + w, a similar
proof is valid, letting b approach w instead of .

The proof for (a,b) ¢ (+°,®) is similar.

PROOF OF THEOREM 1(ii). The proof of Theorem 2(ii) can easily be
adjusted to be a proof of Theorem 1(ii). In the general non-
arithmetic case, Stone's (1965) results can be replaced by the stand-
ard renewal theorem. (There is no need for uniformity of the
renewal-theoretic results as the support of the mixing measure

F= 6{9} in this case is made up of one point.) The detaills are

omitted.




IV. THE AVERAGE RUN LENGTH WHEN v = 1

Define

oo -7 k 7{)'}
Cg’e = E{e) logfl + X e i=1 "4
k=1
My
cg’e tim £® | ¢ zfy}- B
B 1 i=1 ! J

¥,0 _ &Y, _ V.6
“1 3 ¢

F
J9°F = - 3 1og [2n(F' )2 0" (®)]
o _1 1
C, =7 log 1(6) -3
o,F _ O,F . 0,6 0,6 8
Cl = C2 + C3 C2 - C4 .

The computation of Cg’e is an application of renewal theory. The
calculation of Cz’e seems to be feasible only with the aid of Monte

Carlo.

THEOREM 3. If y,8 ¢ Q, 0 <y ¢'(B) - Y(y) < », and the Pie}-distribu-

tion of 1og(fy(xl)/f0(xl)) is non-lattice, then

® 4 o(1)]

®) (y} _ 1 Y,
B N T -Gy 1o At C

where o(1) - 0 as A + o,




L andd

THEOREM 4. Suppose F'(y) = dF(y)/dy exists, is positive, and is

continuous in an open neighborhood of 8 € . Then

) F_ 1 ) 8,F
E1 NA 1) [log A + % log log A + C1 + o(1)]

where o(l) > 0 as A + o,

PROOF OF THEOREM 4, THEOREM 3. For the proof of Theorem 4, assume
(without loss of generality) that 6 > 0. Consider first the case where
F is concentrated on [60,61] where 0 < 60 < 8 < 91 < o are such that
y'(6) - Y(y) > 0 for 60 <y 5_81 and F has a derivative F' which is

positive and continuous on [80,61]. For 60 <y 5_91 denote

. JPEhd
WY =1+ 1z e
k=2
n,y (6)
Note that W converges a.s, Pl ds n > ® to a random variable wy g
®)
. P
*© oAty o on,yy o ® n o, a.5. %y
Since Zn=m W 77y = En=m exp{-y Zi=l X;-n ()] o 0
uniformly in y ¢ [6,.,8.]}, it follows that W is a.s P(e)
0’ 1" y,9 I |
c n,y 2:S- P§e) rmly 1
—_—
continuous in y [60,61], and W prare Wy,e uniformly in

y € [6,,0,]. Note that

n {y}
F_ Jel Ji=1 B

%

WY dr(y) .

The proof of Theorem 4 now follows the rroof of the asymptotic
formula for the expected sample size of power one tests, based on

non-linear renewal theory (cf. Lai, Siegmund (1977)). The details
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presented here follow the proof presented in Woodroofe (1982)
Section 6.3. With minor modifications, the proof is the same.

One difference is that Woodroofe's un(Y;) now has m(ds)
replaced by WS 7(ds). Note that the upper bound on the newly
defined un(fA) is not uniform in wn,s’ One must show that (13) and
(14) of Section 4 of Woodroofe (1982) are nevertheless satisfied.
One can dispense with (14) by noting that W s > 1. To show that
(13) is satisfiéd, it more than suffices to prove the existence of

a constant o > 0 such that

8 a

1)) 1 -

(42) E, I wy,e dF(y)| < .
0

Let € > 0, A = min{n] Iim - P (®)] < € for all m > n}, Suppose that

{y}

€ 1is small enough so that there exists B > 0 such that 2121 Zi > Bn

if n > A for all 8, <y 5_91. There exists y > 0 such that [p(8-y) +

0
Ply) - P(®)] < y for all 60 <y 5.61. There exists a comstant § > 0
)
such that Pfe’(A=x) i.exp{-GA}. Choose 1 > o > 0 such that ay - §(1-a) < O.
Now
8 8 A _Zk;i Ziy} o k-1 Z{y}
J W ecll'-‘(y)-I 1+ £ e * + I e 101 dF(y)
8o %o k=2 k= A 41
% PR Ziy} 1
<j 1+ 2 e + 3 dF(y) ,
90 k=2 _e-
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k-1 _{y}

8, A =% vA
o 13 T g
A _gk-1 z{y} 1 0, k=2
k=2 Py (A=)

8, A
- I 13 VOO HO kD) g
Pl (A=12) 00 k=2

1

1 yA
< —i—roo—— — e
T Aen Y

By Jensen's inequality,

3] a ] o
8 0 1
Eie) J 1 wy’edF(y) = Ei ) E{ ) I wy’edF(y) A

) 9
0 0

® —B a

< z —(—————6)1 Lody2-e e_g) P;e)(/\ =)
=1 (p) (n=nY l-e

The inequality (42) now follows because

1-a

> 1 1 yA)a (8) _1 o YA (8)
z [—————-—)—;—e ) Pl (A.X)- a i e (Pl (A )\))

A=1[p{ (A= Y =l

_13 5 e)\(GY-(l-G)G)
Y A=l

A

< ™o
To complete the proof of Theorem 4 for the case that F is con-
centrated on [80,61] as above, one need only show that (16) of Woodroofe

(1982), Section 4, holds. For this, following Woodroofe's (1982 Section

6.3) proof, it suffices to note that




e A g—————

(log A)/(21(8)) F
z P.(R, 3 A)
i=1 0

Py (N} < (log A)/(21(8)))

(log A)/(21(6))
z

A

i
i=1 A

1 (log A)Z
(1(6))2 A

I A

and hence

2
PO (F < (log w)/(21(0))) < SRLQ/AA) Qog A, L1 ] o[ 1)

+ 07—
(I(e))z A {log A log A

which is equivalent to (16) of Woodroofe (1982), Section 4,

For the general proof of Theorem 4, let F be a measure on the
real line. There exist constants 0 < £ < I(8)/2, w > 0, and
0 < 60 < 0 < 61 < = guch that yy'(8) - ¢(y) > 0 for y ¢ [60,61],
max{y¥' (B-w) - Y(y), yU'(8+w) - Y(y) < £ for y ¢ [60,81], and F(y)

has a derivative F'(y) for 60 <y 5_61 which is positive and continuocus

for 80 <y <8,. Since Pie)(Ni_i (2 log A)/1(8)) is arbitrarily small

-1
(e)
1

(2 log A)/I(B) for large enough A, it suffices to show that

when A is large enough, and since for all x > 0 E (NilNi > x) < x +

n
(6) T
(46) (log A)P1 { max I
=1,...,(21log A)/1(8) k=1
" o8 R-(6,8,]

n
¥Z, o K= (n-k+1)¥(y)

The remainder of the proof is therefore an analysis of this

expression.
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Let - » < 60

<0<8 < GI < ® be such that

- T = max{yy' (8) - ¥(y) |y € (65,0])} < 0 .

In the same manner which lead to (42) above, it can be shown that

there exists a constant o > 0 such that

k a
© yL; o X .-ki(y)
{e) 5 o 1=1 71 aFpy| <o

-1 |
R-[6%,0%] |

' =E

and hence by Jensen's inequality

(45) (log A) P(e) max f

Lo n=1,..0, (2 log A)/1(8) JR-([0%,6%]

n ,
) ; eyzizk X, - (n~k+D)u (y) iF(y) >
¥ k=1 —log A i
¢ ¢ N
b (2 log A)/1(9) n oyl X =(n-k+1)¢(y)
: < (log A) L Pie)((f poe Tk dF(yN™
; n=1 k=1
i3 A o
> g n))
’ < 2. log A r
! = 1O (a/10g &
—> 0.
A > ™
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For large enough A

n Xi x X ~(n-k+1)Y(y)
(46) max X
n=1l,...,(21og A)/1(6) k-l

& L%

n

1 . \
1 n-k+1 1Ek X, € (P'(0-w),y (9+w))]dF(y)

n
max J T eE(n—k+1) dr(y)
n=1,...,(2log A)/1(8) / kel

A

E(n+1)
.(2 log A)/1(8) E

& L2/1(9)
E

A
<
log A

Let n > 0 be such that p(‘”(zi L XK€ (0w 9" (B4 )))

< exp{-nk} for all k. Let A > 0 be such that EL [z5_ (X, - ¥ (0)1*

< AK? for all k. For large enough A and for n < (21log A)/I(6)

z

offf 1 o
1 kel

1

[ —1_ ] A
l[n *71 2 X, E@@-0),b (6+w))} Tog .}
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<

<

c1l—l T ox E@G-w,0@+e)| > =
n-k+1 o 1 ’ log A

max

* _k

6, T X

p(® o1 1=l 74
k=1,...,0

N € (V' B-0),0O+0) | > —
I i -0, A

{=1 log
n k
L p{e){ Z (% -¥"(0))
k=1 1=l
, K 1
* 1l LoX, § (W'(8-w),P'(8+w))| >=; log A
i=1 Y
- -2—* loglog A - kp'(8) + 108(1(9)/2)}
®
na(log A)lﬂ' >\k2
k=1 [l*- log A - —2;- log log A - kPp'(0) + log(I(e)/Z)‘l2
8 )
1 1 J
n ) X ' ,
+ YR 20 R X, € (¥'(0-0),¢'0+w0)
k=(log A) i=1

\(10g &)

- [l*. log A - _Z; loglog A - (log A)3”‘ PO + 103(1(9)/2)]6
) ;]
1 1 )
+ e N(log A):m' 1

l-e




It follows that

6F n yI® =(n~k+1)¥(y)
(47) (log A) P{e) max Ll e 1=k i
k=l,...,(210g A)/I(6) 1 k=1

1
'l[rm g 1 WOV ‘““’”]‘""” " Tog “}

0

Ao )

In a similar fashion one gets that

Le

* =
onl

~(n-k+l
(48)  (log A) P{e) max Ieo iy yzx i Xy~ (n=k+1)¥(y)
k=1,...,(21og A)/1(6)

e 1]l o \ , A
l[n-k+1 151; XiE W'(0-w,y (9+m))]dF(y) > Tog & A}

e 0 -

Formulas (45)-(48) account for (44) and so the proof of Theorem 4
is complete.
The proof of Theorem 3 follows along similar lines. The details

are amitted.
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V. MONTE CARLO

A Monte Carlo study was made for the normal model with unit

variance. Letting fe denote the density of the N(6,1) distribution,

simulations of Nie}, R{?g} were made for 6 = .4, .8, 1.0, 1.2, 1.6,

2.0, 2.5, 3.0, 4.0 and ﬁ = 10, 20, 30, 100 using X, ~ N(0,1) random

i

numbers. For each of the 36 combinations of and A, 10,000 realiza-

tions were obtained. The results show the asymptotic formulae (derived

el

in the previous sections) to give a very good picture of Eo A

even

for surprisingly low values of A.

{8} {6}

As expected, the Monte Carlo estimate of E (R {6] - N ) was

{6} ) "

zero: in only one of the 36 cases did (R {6} - N ) exceed two (Monte

Carlo) standard deviations of R{?g} ie}

A
(1977) lead one to conjecture that the linear correlation coefficient

between Nie} and R{?é} is asymptotically (A + =) zero. The Monte Carlo

A
results support this conjecture - the highest Monte Carlo correlation

29} and R{?él was .0234. (In 28 of the 36 cases the correlation

{0} " (8}

between N and {9} was not significantly different from zero at a

. Results of Lai and Siegmund

between N

52 level of significangé, and in all of the 36 cases this correlation was
not significantly different from zero at a 1% level of significance.)

Therefore, estimates of E Ne were made using a linear combination

0A
o {e} + (1 - ) R{ 0} where a was chosen to minimize
A,0 Na ®a,0 {e}' A,B
{e} {e}
a Var N + (lqa) Var R {6} (the variances being Monte Carlo vari-

ances). The results are présented in Table 1.
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TABLE 1: Values of EONf\e} predicted by asymptotic theory (TH) and estimated
by Monte Carlo (MC)
1
{ A 10 20 30 100
: ) Eonie} of Me EON};G} e e zon‘{\e} of C EoNie} of tiC
| L] e 25.24 37.86 126.21  *
Mc | 13.01 .03 25.57 .05 38.20 .08 | 126.44 .27
E L | ™| e 31.82 47,73 159.09  *
"l Mc | 16.51 .07 32,32 .14 48.58 .22 | 159.61 .68
TH | 17.85 35.69 53.54 178.45  *
SO e | 18.44 .09 36.23 .21 54.53 .30 | 178.25 .95
TH | 20.00 40.00 60.00  * 200,01 %
"2 e | 20.08 .13 40.59 .27 60.56 .40 | 200.71 .40
TH | 25.05 50.09 75.14 % . 250.47  *
" ke | 2662 .20 52.65 .42 76.00 .60 | 248.27  1.91
H | 31.21 62.42 93.62  * 312.08  *
20 e | 36050 .32 65.52 .58 93.93 .84 | 315.47  2.74
TH | 40.72 81.44 122.16 407.20  *
22 e | 4827 .46 89.65 .87 | 128.39  1.22 | 406,78  3.91
TH | 52.52 105. 04 157.56 525.21  *
| > we | 72075 .71 |127.08 1.25 |180.15 1.80 | 533.15  5.23
TH | 83.93 167.87 251,80 839.35
“O 1 wclise.s8 186 | 31525 310 |428.10  4.30 |1099.02 10.96




D

(In Table 1, TH represents the theoretical value one would expect
for Eoui using Theorem 1(ii1); MC represents the estimated based on the
Monte Carlo trials. The (Monte Carlo) standard deviation of this esti-
mate is given under the heading of "S.D. of MC." The starred cells

in Table 1 are those where TH -~ MC did not exceed 2 (Monte Carlo)

standard deviations of TH.)

TABLE 2: Ratios of asymptotic theory predictions of E N{e} to Monte

0 A
Carlo estimates (TH/MC)

\\V{\X 10 20 30 100
8

A .97 .99 .99 1.00

.8 .96 .98 .98 1.00
1.0 .97 .99 .98 1.00
1.2 .95 .99 .98 1.00
1.6 .94 .94 .99 1,01
2.0 .90 .95 1.00 .99
2.5 .84 .91 .95 1.00
3.0 W72 .83 .87 .99

4.0 .4h .53 .59 .76 :




'i

Y

The results show a surprisingly good fit, even for low values
of A (as long as O is not too large). (Table 2 presents the ratio
between the theoretical value of TH and the Monte Carlo estimate MC.)
It seems clear that for most practical purposes the asymptotic formula
could be safely applied. (Shewhart control charts using "30 limits"

- often used in practice - have a Po-expected stopping time of 74l1.)

For an indication of how well one may expect the formula of
Theorem 4 to fit, see Pollak and Siegmund (1975). One would expect

the formula presented there to hold as well as the formulae presented

here, provided that E{G)Ni is large enough for the distribution of
logll + k=1 exp{-Xi:l Zie}}] to have approximately reached its limit-

ing distribution.




VI. REMARKS

1. In Theorems 1, 3, 4 if I(8) = =, it is possible to show

that EoNie}/A + ® gg A *> © and E{e)

2. Using the method involved in showing the validity of

Ni/log A=+ 0as A+ >,

Remark 1, one can show that Theorem 2 remains valid with
F({y|1(y) < =}) > 0.

3. It seems reasonable to conjecture that Theorem 2 remains
valid if the P{y)-distribution of Xl is just assumed to be non-lattice.
The proof given above for Theorem 2 breaks down because the uniformity
of a renewal-theoretic convergence used in the proof of Lemma 1 need
not exist if the strongly non-lattice assumption is dropped.

4. 1In the lattice case, even a version of Theorem 1 seems to

be difficult to formulate. Despite X,'s being lattice, Rn is not, and

{e}
A/C

an expression for the non-lattice part of the asymptotic Po-distribution

1

the proof presented here - which conditions on N - does not yield

of log R{?é}- log A.
NA
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